uniquely$87679$ - definitie. Wat is uniquely$87679$
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is uniquely$87679$ - definitie

GRAPH WITH ONLY ONE POSSIBLE COLORING
Uniquely edge-colorable graph; Uniquely total colorable graph
  • The unique 3-edge-coloring of the [[generalized Petersen graph]] ''G''(9,2)

Uniquely colorable graph         
In graph theory, a uniquely colorable graph is a -chromatic graph that has only one possible (proper) -coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into independent sets and there is no way to partition them into independent sets.
Ergotic         
PROPERTY OF A DYNAMICAL SYSTEM
Ergodic; Nonergodic; Ergodic measure; Ergodic (adjective); Ergotic; Uniquely ergodic; Unique ergodicity; Absorbing barrier (finance)
·adj Pertaining to, or derived from, ergot; as, ergotic acid.
Ergodicity         
PROPERTY OF A DYNAMICAL SYSTEM
Ergodic; Nonergodic; Ergodic measure; Ergodic (adjective); Ergotic; Uniquely ergodic; Unique ergodicity; Absorbing barrier (finance)
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point.

Wikipedia

Uniquely colorable graph

In graph theory, a uniquely colorable graph is a k-chromatic graph that has only one possible (proper) k-coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into k independent sets and there is no way to partition them into k − 1 independent sets.